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Abstract
Water can be supercooled to temperatures as low as −92 ◦C, the experimental
crystal homogeneous nucleation temperature TH at 2 kbar. Within the
supercooled liquid phase its response functions show an anomalous increase
consistent with the presence of a liquid–liquid critical point located in a region
inaccessible to experiments on bulk water. Recent experiments on the dynamics
of confined water show that a possible way to understand the properties of water
is to investigate the supercooled phase diagram in the vicinity of the Widom line
(locus of maximum correlation length) that emanates from the hypothesized
liquid–liquid critical point. Here we explore the Widom line for a Hamiltonian
model of water using an analytic approach, and discuss the plausibility of the
hypothesized liquid–liquid critical point, as well as its possible consequences,
on the basis of the assumptions of the model. The present analysis allows
us (i) to find an analytic expression for the spinodal line of the high-density
liquid phase, with respect to the low-density liquid phase, showing that this
line becomes flat in the P–T phase diagram in the physical limit of a large
number of available orientations for the hydrogen bonds, as recently seen in
simulations and experiments (Xu et al 2005 Proc. Natl Acad. Sci. 102 16558);
(ii) to find an estimate of the values for the hypothesized liquid–liquid critical
point coordinates that compare very well with Monte Carlo results; and (iii)
to show how the Widom line can be located by studying the derivative of the
probability of forming hydrogen bonds with local tetrahedral orientation which
can be calculated analytically within this approach.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Liquid water can be supercooled to far lower than its melting temperature. The experimental
limit of stability of bulk liquid water, the crystal homogeneous nucleation temperature TH, is
−41 ◦C at atmospheric pressure [1], and −92 ◦C at 2 kbar [2].
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If rapidly cooled below TH, water freezes into a glassy, amorphous solid [3], forming
at low pressure a low-density amorphous (LDA) state [3] and at high pressure a high-
density amorphous (HDA) state [4], with a volume discontinuity between them of ≈27 %,
comparable to that between crystalline ice I and ice VI [5–8]. By compressing HDA to
over 0.95 GPa, consistent with computer simulations [9], water forms the very-high-density
amorphous (VHDA) [10, 11] with a volume discontinuity of 11%. At −148 ◦C the three
polyamorphs can be formed by compression in a stepwise process LDA–HDA–VHDA [12],
but additional investigation is needed to clarify if these are real discontinuous transitions or just
very sharp increases of densities. By heating amorphous ice, water crystallizes above a limiting
temperature of spontaneous crystallization TX, about −123 ◦C at P � 0.1 GPa, and no liquid
bulk water can be probed for TX < T < TH.

Confined water can be supercooled even in this range of temperatures, e.g., in plant fibres
at −47 ◦C [13], which has inspired several experiments [14] on water under confinement
(see e.g., [15–19]) and on hydration and surface water [20–22], with liquid water existing
at temperatures as low as −113 ◦C [18] at ambient pressure. At these extremely low
temperatures interesting dynamical phenomena have been observed [19, 23, 24], suggesting
the possible relation between water dynamics and the dynamics of biological macromolecules
in water [22, 25].

It is under investigation if a comparison between the results for hydration water and the
properties of bulk water could give insight into the mechanisms of the anomalous behaviour
of water. One possible way of performing this research is to compare the experiments with
simulations of water models. Many of these models are based on effective interaction potentials
optimized to fit some water property [26]. However, the many parameters and interactions
prevent from obtaining a simple picture of the physical mechanisms.

A complementary approach is to analyse schematic models, based on phenomenological
considerations and with few parameters, to help in understanding the relevance of each
parameter for the reproduced water properties [27]. Among these models those described by a
Hamiltonian are particularly suitable for analytic calculations and Monte Carlo simulations.
One of these models [28, 29], solved analytically and by simulations, suggests that the
cooperativity of the hydrogen bond network is a key feature to understand the behaviour of
supercooled water.

1.1. The anomalous response functions of water

In normal liquids, the response functions decrease with decreasing T . Examples are the
isothermal compressibility KT , the isobaric heat capacity CP , or the thermal expansivity αP

(figure 1). This is consistent with the decrease with decreasing T of the fluctuations of
quantities such as volume V or entropy S, that are proportional to these response functions.

At variance with normal liquids, for water the amplitudes of all these response functions
increase by decreasing T below a value which depends on the considered quantity. The increase
of KT below 46 ◦C, of CP below 35 ◦C and of |αP | below 4 ◦C, are consistent with power laws
diverging to infinity at about −45 ◦C, hinting at some sort of critical behaviour [30, 31, 34].
The negative value of αP is related to the most famous anomaly of water: its density maximum
at 4 ◦C. Below this temperature the volume of water expands, causing phenomena as frozen
water pipes breaking or iceberg floating.

2. Structural analysis of supercooled water

As recognized by Linus Pauling in 1939 [35], the distinguishing feature of water, compared
to other chemically similar substances, is the preponderance of hydrogen bonds. Each water
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(a) (b) (c)

Figure 1. Dependence on temperature, at atmospheric pressure, of (a) the isothermal
compressibility KT ≡ −(∂ ln V/∂ P)T , proportional to the average value of the fluctuations of the
volume per particle V̄ through the relation KT = 〈(δV̄ )2〉/kBT V̄ , with a minimum at 46 ◦C [30],
(b) the constant-pressure specific heat CP ≡ T (∂S/∂T )P , proportional to the fluctuations of
entropy S through the relation CP = 〈(δS)2〉/NkB, where N is the number of particles, with a
minimum at 35 ◦C [31], and (c) the thermal expansivity αP ≡ (∂ ln V/∂T )P proportional to the
cross-fluctuations of entropy and volume, αP = 〈(δSδV̄ )〉/kBT V̄ , with negative values below
4 ◦C [32]. The dashed line indicates the behaviour of a typical liquid, which, very roughly, is an
extrapolation of the high-T behaviour of liquid water. The anomalies become more striking below
the melting temperature Tm. Adapted from [33].

molecule has two hydrogen atoms and two lone electron pairs, forming on average four O–H
bonds with nearby H2O molecules. Experiments shows that each molecule is surrounded by
four nearest neighbour molecules at a distance of about 2.75±0.05 Å, with a small dependence
on T and P [36].

The first shell has a structure that resembles that of a tetrahedron. However,
experiments [36] and simulations [37] show that the molecules bonded to the lone pairs of
the central one can deviate from the tetrahedral position, having an uniform probability to be
located at any intermediate angle, reflecting the delocalization of the lone pairs.

Neutron diffraction measurements, performed by Soper and Ricci in 2000 [36], show that
by increasing P from 26 MPa (approximately 260 time the atmospheric pressure) to 400 MPa
at T = 268 K (−5.15 ◦C) part of the second shell, originally tetrahedral and at an average
distance of about 4.5 Å, collapses at a distance of about 3.5 Å toward the first shell, increasing
the local density. This structural change has been initially observed by varying T from about
263 to 313 K in x-ray structure factor experiments for heavy water D2O in 1983 [38]. Their
data show that by decreasing T the average O–O–O angle increases toward the tetrahedral angle
109.47◦.

This structural change was already alluded as long ago as in 1951 by Pople’s continuous
random network model for water [39]. With his phenomenological model Pople shows that
transforming water from ice to liquid there is a small, but non-negligible, probability of
shift of second and third neighbour molecules toward the first coordination shell of a central
molecule [39]. However, the possibility of a transformation with pressure and temperature from
a low-density liquid (LDL) form of water to a high-density liquid (HDL) water has been seen
for the first time in simulations for ST2 and TIP4P water by Poole et al in 1992 [40], showing
the LDL–HDL phase transition below 200 K and above 150 MPa.

The continuous structural change is found also in ab initio water simulations [41] at very
high pressure, P = 104 MPa, and T = 600 K. The result is qualitatively confirmed in
simulations for TIP4P water [42] where the change occurs along a decreasing P(T ) line. In
very good agreement with the experiment of Soper and Ricci, the change occurs at about 350–
400 MPa at T = 268 K [42]. Further experimental confirmation has come in 2005 from sound
velocity measurements [43] showing data consistent with the structural change at 290, 210 and
190 MPa at 293, 316, 353 K, respectively, in good agreement with the simulations [42].
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The observed increase of density is reminiscent of the simulation results showing the
presence of an interstitial molecules at a distance of 3.2–4.4 Å between the first and the second
shell for SPC/E water [37] and for TIP3P water at the very high density of 0.1852 mol Å

−1
[44],

corresponding to a macroscopic density of 5.52 g cm−3, i.e., almost five times the estimated
density 1.20 g cm−3 for HDL water [36]. These interstitial molecules are located in a region
very close to the first shell and, in this sense, they increase the coordination number from 4 to
4.8 at −10 ◦C, and to 5.0 at 100 ◦C [37]. Therefore, the local density decreases on decreasing
T .

The interstitial molecules could be partially H bonded to the central molecule [37],
determining an overcoordination with bifurcated (shared) H bonds [45]. The overcoordination
could be relevant to allow the reorientation of a molecule [46]. In liquid water the hydrogen
bonds form a dynamic network, where hydrogen bonds have a lifetime of the order of
picoseconds, with rotation and diffusion of the molecules [46]. The dynamics of the hydrogen
bonds slows down when the temperature is decreased [47] before freezing in a full hydrogen
bond network, corresponding to ice.

In many ices, e.g., ice Ih, Ic, VII, VIII, X, XI, for pressures below 200 MPa and above
2000 MPa, the four nearest neighbours of the first coordination shell are at the tetrahedral angle
109.47◦ [48]. This suggests that at very low T , just before freezing, the liquid assumes an
approximately tetrahedral local structure.

This is, indeed, confirmed by experiments [36, 38] and ab initio simulations [41] where
the open structure, at low P and low T , is characterized by a O–O–O angle distribution peaked
around the tetrahedral angle. The collapsed structure, at high P and high T , instead has
a distribution that is flatter or with more peaks. These results are consistent with previous
experiments showing the gradual increase of the tetrahedral open structure at atmospheric
pressure by decreasing T from about 368 to 249 K for water [49] and from about 353 to 243 K
in H2O–D2O solution [50].

The following is a summary of the above observations.

(i) Below the homogeneous crystal nucleation line TH some of the ice polymorphs possess a
tetrahedral structure, or structures of copenetrating tetrahedra.

(ii) At low P and low T , above TH, the molecules in supercooled water form an open
approximately tetrahedral network of hydrogen bonds.

(iii) The open structure is characterized by a O–O–O angle distribution peaked around the
tetrahedral angle 109.47◦.

(iv) The open structure is prevalent at atmospheric pressure at T as high as 400 K (about
126 ◦C).

(v) In the open structure the number of molecules in the first shell is on average four.
(vi) By increasing P , e.g., above about 300 MPa at 300 K, the number of molecules in the first

coordination shell increases, with a partial collapse of the second (and maybe the third)
neighbours toward the first neighbours, increasing the local density around the central
molecule.

(vii) An analogous increase of local density, i.e. increase of number of molecules within the
first and the second shell, occurs by increasing T , e.g., above 273 K at about 350 MPa.

(viii) The change between open and collapsed structure occurs at elevated pressures at low T
and at lower P at higher T , i.e. occurs in an interval of P that decreases for increasing T .

(ix) The local increase of density implies a distortion of the tetrahedral network, causing a
broadening of the O–O–O angle distribution and the probable appearance of new peaks
corresponding to interstitial molecules.
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(x) The interstitial molecules affect the strength of the tetrahedral hydrogen bonds, with
the appearance of bifurcated bonds and overcoordination, favouring the breaking of the
hydrogen bond and the diffusion of the molecules.

3. A tractable model

The above facts have inspired the formulation of a large variety of models [27, 51]. We consider
here one proposed in [28, 29], studied in detail in [52] by a mean field analytic approach, and
also by Monte Carlo simulations. In this section, we present a general formulation of the model,
discussing in details its assumptions and their motivations. We will then present some specific
results and perspectives.

The system is divided into cells i ∈ [1, . . . , N] on a regular square lattice, each containing
a molecule, with a volume vi � v0, where v0 is the hard-core volume of one molecule.
In d dimensions the distance between two nearest neighbour molecules i and j is ri, j ≡
(v

1/d
i + v

1/d
j )/2. Since vi is a continuous variable, the distance ri, j is as well continuous.

The dimensionless density for the molecule in cell i is v0/vi ∈ (0, 1]. In the lattice gas
spirit, we use a discrete two-state liquid index ni to quantify if the cell i is in the liquid phase
or not, with ni = 1 if v0/v � 0.5 and ni = 0 otherwise.

The van der Waals attraction between the molecules is represented by a standard lattice
gas Hamiltonian term

H ≡ −ε
∑

〈i, j〉
ni n j , (1)

where ε > 0 is the van der Waals attraction energy, which induces the liquid–gas phase
transition.

Following [53], we assume that each water molecule can form four hydrogen bonds. As
mentioned, see points ((v)–(x)) in previous section, this is no longer true at high P and T where
a more dense, collapsed and distorted, local structure with bifurcated bonds is consistent with
the data. However, we take into account the change of the local structure by (a) considering the
possibility of breaking bonds or, better said, bifurcating and breaking bonds and (b) changing
the local density as function of the number of non-bifurcated hydrogen bonds formed by a
molecule, consistent with the lower density of the open structure, as in point (v) of previous
section.

As suggested by point (x), bifurcated bonds decrease the strength of the network and favour
the hydrogen bond breaking and re-formation. We simplify this situation by assuming that only
non-bifurcated, i.e. normal, hydrogen bonds decrease the energy of the system. Hereafter we
will say that a hydrogen bond is formed if it decreases the total energy and it is not bifurcated.

Two nearest neighbour molecules can form a hydrogen bond if the hydrogen of one is
oriented toward the electron cloud of the other. Pictorially, it can be helpful to imagine that
each molecule has four ‘arms’, two for the hydrogens and two for the electron clouds, and that
oppositely charged arms of two nearest neighbour molecules must point to each other to form a
hydrogen bond. However, this picture can be misleading, since, for example, the angle between
the hydrogens (two ‘arms’) on the same molecule is not changing in a significant way with the
formation of hydrogen bonds and only the electron clouds have some freedom to change their
distribution around the oxygen.

Nevertheless, once a hydrogen bond is formed there is a reduction of the accessible
configurations for the two molecules, because the molecules are less free to rotate. This
reduction can be taken into account by adopting a variable with many states for each ‘arm’
and assuming that two facing arms have to be in the same state to form a hydrogen bond. At
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this level of description of the arms we do not distinguish between hydrogens and lone pairs.
Their distinction would decrease further the number of accessible configurations.

To simplify the model we represent the arm of molecule i facing molecule j by the Potts
variable σi j = 1, . . . , q , where q is the maximum number of states for each arm and is a
parameter of the model. Very large values of q , of the order of 100, can be considered as an
almost continuous variation of the arm position [53]. However, also lower values of q , of the
order of 10, are enough to model the large reduction of accessible states for each arm forming
a normal hydrogen bond.

Following [53], the energy decrease for the hydrogen bond formation is given by

HHB ≡ −J
∑

〈i, j〉
ni n jδσi j ,σ j i , (2)

where J is the energy associated with each normal hydrogen bond formed (δσi j ,σ j i = 1 if
σi j = σ j i and δσi j ,σ j i = 0 otherwise). We assume that 0 < J < ε in such a way that hydrogen
bonds are very rare in the gas phase.

To account for the change of local density when the structure goes toward the open
structure by forming four hydrogen bonds tetrahedrally ordered, a small volume vHB is added
to the local volumes vi and v j of the two hydrogen bonded molecules i and j , increasing
their average distance to ri j ≡ (vi + v j + vHB)/2. Pictorially, this can be viewed as a local
increase of the excluded volume associated with molecules i and j and is consistent with points
((ii), (v)) of previous section. If the system starts from low T with an open network, in the
N PT ensemble the probability to keep a normal hydrogen bond between molecules i and j ,
∼ exp[(J − PVi j)/kBT ], with Vi j ≡ vi + v j , decreases for increasing T and for increasing P .
Hence, the probability to have a larger excluded volume will decrease for increasing T and P ,
inducing an increase of the local density, consistent with point ((vi), (vii)).

As a consequence of the local increase of volume for the formation of a normal hydrogen
bond, the total volume V ≡ �ivi increases and will be proportional to the total number of
normal hydrogen bond NHB, as

V ≡ V0 + NHBvHB, (3)

where V0 is the volume of the liquid with no hydrogen bonds, and

NHB ≡
∑

〈i, j〉
ni n jδσi j ,σ j i . (4)

We now use points ((i)–(iii), (ix)), specifically that the O–O–O angle formed by three
nearest neighbour molecules becomes more locally tetrahedral when T and P decrease. We
include this information in the model by introducing an intramolecular interaction between
the arm variables on the same molecule. This intramolecular interaction induces a correlation
between the arms such that they assume a locally tetrahedral structure at low T and P . To this
goal, it is sufficient to consider the Hamiltonian term

HIM ≡ −Jσ

∑

i

ni

∑

(k,l)i

δσik ,σil , (5)

where Jσ is the characteristic intramolecular energy interaction and the sum is extended over
all the 4C2 = 6 different pairs (k, l)i of the arms of a molecule i . Here we assume that
0 < Jσ < J , in such a way that the intramolecular interaction is relevant only when hydrogen
bonds are formed.

Therefore, our model has the total Hamiltonian

Htot ≡ H + HHB + HIM (6)

with the volume given by equation (3).

6
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The implicit form of the equation of state

Htot − T S + PV = μ
∑

i

ni , (7)

where μ is the chemical potential, by using equations (1)–(5) can be written as

T S − PV0 = −
∑

〈i, j〉
ε ′

i j ni n j −
∑

i

μ′
i ni , (8)

where

μ′
i (σ ) ≡ μ + Jσ

∑

(k,l)i

δσki ,σli , J ′ ≡ J − PvHB and ε ′
i j ≡ ε + J ′δσi j ,σ j i (9)

are the effective chemical potential, effective hydrogen bond coupling and effective interaction
energy, depending, respectively, on the arms configuration, on the pressure and on both pressure
and arms configuration. From equation (9) is evident that by increasing P the effective
interaction decreases. Hence, we expect that by increasing P at constant T , as well as by
increasing T at constant P , the probability of forming normal hydrogen bonds and their number
NHB decrease. Therefore, the density increases and the local tetrahedral order decreases,
consistent with points ((vi)–(x)).

The molar Gibbs free energy is

g ≡ u − T s + Pv = μ, (10)

where

u ≡ Htot∑
i ni

, v ≡ 1∑
i ni

and s ≡ SW + Sσ∑
i ni

(11)

are, respectively, the molar energy, the molar volume and the molar entropy, with the
contribution SW of the N variables ni and Sσ of the 4N variables σi j .

3.1. Mean field analysis

To find an analytic expression for g we adopt a mean field analysis. The main assumption is
that the system is in a homogeneous phase. As a consequence all the quantities are independent
of the cell i . Hence, in our description we replace the cell volume vi with the average cell
volume

v ≡
∑

i vi

N
, (12)

the ri j distance with the average nearest neighbour distance r = v1/d in d dimensions and the
cell liquid index ni with its average value

n ≡ 1

N

∑

i

ni . (13)

In analogy with the average number density of liquid cells n, we introduce the average number
density of arms in the appropriate state to form a normal hydrogen bond with local tetrahedral
order

nσ ≡ 1

4nN

∑

〈i, j〉
δσi j ,1, (14)

where we assume that state σi j = 1 corresponds to the arm in the locally tetrahedral
configuration and the sum is performed only on the liquid cells. Hence, nσ = 0 for n = 0.

Following the mean field random mixing approximation, we introduce a liquid–gas long-
range order parameter m ∈ [−1, 1], defined as the difference between the number density of

7
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liquid cells and the number density of gas cells m ≡ n − (1 − n), and a locally tetrahedral
hydrogen bond long-range order parameter mσ ∈ [0, 1], defined as the difference between
the number density of σi j = 1 and the average number density for the other q − 1 states
mσ ≡ nσ − (1 − nσ )/(q − 1). Hence,

n = 1 + m

2
, nσ = 1 + (q − 1)mσ

q
, (15)

with n = 0 for m = −1 while n = 1 for m = 1, and nσ = 1/q for mσ = 0 while nσ = 1 for
mσ = 1.

Since every molecule has up to four nearest neighbours and four arms, we can write in the
mean field approximation,

∑

〈i, j〉
ni n j = 2Nn2,

∑

〈i, j〉
ni n jδσi j ,σ j i = 2Nn2 pσ ,

∑

i

ni

∑

(k,l)i

δσik ,σil = 6Nnpσ ,

(16)

where

pσ ≡ n2
σ + (q − 1)

(
1 − nσ

q − 1

)2

= 1 + (q − 1)m2
σ

q
(17)

is the probability of having the facing arms of two nearest neighbour molecules in the same
state, but not necessarily in the local tetrahedral order. Hence, the molar energy equation (11)
becomes

u = −2[εn + (Jn + 3Jσ )pσ ]. (18)

Defining N+ ≡ nN , N− ≡ N − N+ = N(1 − n), and N1 ≡ 4nNnσ , Ni ≡
4nN(1 − nσ )/(q − 1) for i = 2, . . . , q , for the entropies SW ≡ k ln[N !/(N+!N−!)] and
Sσ ≡ k ln[4nN !/(N1!N2! . . . Nq !)], by using the Stirling approximation ln l! = l ln l − l, for
any large integer l, we obtain

− SW

kB N
= n ln n + (1 − n) ln(1 − n),

− Sσ

4kBnN
= nσ ln nσ + (q − 1)

(
1 − nσ

q − 1

)
ln

(
1 − nσ

q − 1

)
.

(19)

Finally, using the mean field expression for the volume per cell equation (3), V/N =
v0 + 2nvHB pHB, we obtain the mean field molar liquid density ρ ≡ nN/V

ρ = 1 + m

2(v0/n) + 4vHB pHB
, (20)

where v0 ≡ V0/N and pHB ≡ n2 pσ is the probability of forming a normal hydrogen bond with
local tetrahedral order between two nearest neighbour molecules.

The equations (15), (17), and (20) are consistent with the points ((vii), (ix), (x)) that suggest
that there is no local tetrahedral order (mσ → 0) for the high-T liquid. Indeed, for the high-T
liquid is pσ → 1/q because there is no correlation between the states of the molecules arms,
and hence mσ → 0 for equation (17). Therefore, if m � 0 (liquid phase), then n � 1/2,
pHB � 1/(4q) and ρ v0 � 1/[(2/n) + vHB/(qv0)] < 1/2.

On the other hand, points ((ii), (iii)) show that in the low-T liquid phase (m → 1) the local
tetrahedral order increases. This suggests two things. The first is that mσ increases toward 1.

8
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When mσ � 1/2, pσ � (q + 3)/(4q) < 1, pHB � pσ and ρ v0 > 1/[1 + 2vHB/v0] > 1/2.
When mσ → 1, pσ → 1, pHB → 1 and ρ v0 → 1/[1 + 2vHB/v0]. Hence, when the
local tetrahedral order increases at low T , the density ρ decreases, with a maximum at some
intermediate T at constant P , that is indeed the case of water.

The second observation suggested by points ((ii), (iii)), together with the finite value of
the interaction constants ε, J and Jσ , is that locally tetrahedral configuration of one arm is
favoured if already the other three arms of the same molecule are in the local tetrahedral state.
This cooperative effect can be taken into account by introducing the mean field h generated by
these three arms and acting on the fourth arm of the same molecule. We choose h proportional
to the intramolecular interaction between the arms, the number of arms generating h and to the
density nσ of arms in the locally tetrahedral order, i.e.

h ≡ 3Jσ nσ . (21)

We now approximate the quantity pσ calculated in the whole system with its value
calculated for a single couple of facing interacting arms under the action of the mean field
h, i.e.

pσ = 〈δσi j ,σ j i 〉h, (22)

where the right-hand side can be easily calculated as

〈δσi j ,σ j i 〉h =
[

1 + (q − 1)
2wmσ

+ q − 2

exp[ J ′(P)

kBT ](w2
mσ

+ q − 1)

]−1

, (23)

with

wmσ
≡ exp

{
3Jσ [1 + mσ (q − 1)]

qkBT

}
. (24)

As expected for pσ , also 〈δσi j ,σ j i 〉h → 1/q for T → ∞ and 〈δσi j ,σ j i 〉h → 1 for T → 0 and
J ′ > 0, i.e. P < J/vHB for equation (9).

For P > J/vHB and T → 0, 〈δσi j ,σ j i 〉h → 0. This is in apparent contradiction with
pσ definition equation (17). In this case the effective hydrogen bond interaction is J ′ < 0,
disfavoring the local tetrahedral ordering at low T . Hence mσ → 0 and, for equation (17),
pσ → 1/q . However, in the physical limit q → ∞, we recover pσ → 0 as for 〈δσi j ,σ j i 〉h .
Therefore, the approximation in equation (22) includes all the physical conditions suggested
by the previous observations ((i)–(x)) and holds better in the physical limit of large q .

We now can follow two strategies to minimize the Gibbs free energy g:
(i) The first strategy, followed in [52], consists in replacing pσ for its approximation on

the right-hand side of equation (22) in the mean field expression of g. Then, we numerically
minimize g with respect to m and mσ .

(ii) The second strategy, followed in [54], consists in solving, numerically, equation (22)
with respect to mσ and calculating pσ from equation (17). Then, we numerically minimize g
with respect to the only free order parameter m. Since for P > J/vHB the only possible solution
is mσ = 0, and hence pσ = 1/q , in this case we recover the results of the previous method
only in the limit q → ∞ [54]. However, even for finite q the two methods for P < J/vHB give
the same qualitative phase diagram. Here we report new results with method (i).

First, the mean field results (figure 2(a)), consistent with computer simulations [52],
reproduce the known phase diagram of fluid water, with the liquid–gas coexistence region
ending in the critical point C , at TC = 1.03 ± 0.03 and PC = 0.18 ± 0.04, and with the
temperatures of maximum density (TMD) at constant P that decreases with increasing P as in
the experiments [55, 56].
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(a)

(b)

Figure 2. (a) Liquid density ρ at constant pressure P as function of temperature T . Continuous
lines, from bottom to top, are for 0 � Pv0/ε � 0.20, with increment of 0.02, and for
0.3 � Pv0/ε � 1.0, with increment of 0.1. Thin dashed lines, from bottom to top, are for
1.1 � Pv0/ε � 1.6, with increment of 0.1. The circle is the estimate of the liquid–gas critical
point C , based on the discontinuity of the T -derivative of isobaric densities. For any P � 1.3 there
is a temperature of maximum density (TMD) below which ρ decreases, saturating at 0.5 v−1

0 at
low-P, T . (b) Enlarged view at low T . Thin dashed line is for Pv0/ε = 0.7 and continuous lines,
from bottom to top, are for 0.77 � Pv0/ε � 0.99, with increment of 0.01. A discontinuity in ρ

appears above Pv0/ε = 0.8. The circle is the estimate of the hypothesized liquid–liquid critical
point C ′, based on the discontinuity of the T -derivative of isobaric densities. In both panels the size
of circle for the critical point is of the order of the error on the estimate and the thick dashed line is
a guide for the eyes to mark the coexistence region with the discontinuity in ρ.

In the deeply supercooled region we find that the density has another discontinuity marking
the coexistence region between two liquids at different densities. On decreasing P the region
terminates in the hypothesized liquid–liquid critical point C ′, at kBTC′/ε = 0.062 ± 0.02 and
PC′ v0/ε = 0.82 ± 0.02,3 and following a line with negative slope in the P–T phase diagram
(figure 3 (b)), consistent with the liquid–liquid critical point scenario.

This picture was initially proposed by Poole et al on the basis of computer simulations [40]
and then shown to be consistent with experiments with a discontinuous LDA–HDA
transition [8]. In this scenario the LDA–HDA transition line does not terminate when it
reaches the spontaneous crystallization line at TX, but extends above it, with LDA transforming
without discontinuity into LDL, and HDA into HDL, giving a LDL–HDL phase transition line.
According to this hypothesis, along this line the two kinds of liquids coexist as two separate
phases. Since the collapsed structure of HDL is more disordered than the open structure of
LDL, the entropy of HDL is larger than that of LDL and this implies, for thermodynamics

3 This estimate of C ′ is more consistent with the Monte Carlo result of [52] than the mean field estimate given in the
same reference [52], based on calculations with lower precision than that presented here.
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Figure 3. (a) The mean field P–T phase diagram of the present model, with parameters J/ε = 0.5,
Jσ /ε = 0.05, vHB/v0 = 0.5 and q = 6. The open circles are points along the liquid–gas (LG) first-
order phase transition line, ending in the LG critical point C (full circle). Crosses are points along
the line of temperature of maximum density (TMD). From C two lines of maxima emanate: squares
are maxima of αP = −(dρ/dT )P/ρ, diamonds are maxima of (2vHB/v)(d pHB/dT )P . These
two quantities show minima along a line below the TMD (lower and upper triangles, respectively)
marking the Widom line that emanates from the point C ′. (b) Enlarged view at low T . The Widom
line meets the Pmσ =0 (thick continuous) line, equation (26), for a 0.02 � kBT/ε � 0.05, giving an
estimate for the hypothesized liquid–liquid critical point C ′. The Pmσ =0 line is the estimate of the
spinodal of the high-P–T phase with mσ = 0. The estimate of the spinodal of the low-P–T phase
with mσ = 1 is given by the convolution of the (thin continuous) lines Pmσ with 0 < mσ � 1 (the
thin continuous lines are, from bottom to top at T = 0, for 0.1 � mσ � 0.9 with increments 0.1;
thin dashed line is for mσ � 1). The average (thick dashed line) between the two spinodal lines is
the estimate of the liquid–liquid first-order phase transition line. The estimate of the hypothesized
liquid–liquid critical point C ′ (full circle) is the average between the point where the two spinodal
lines meet (upper open circle) and the estimate given by the analysis of the density discontinuity
(lower open circle), as discussed in the text. In both panels, where not shown, errors are smaller
than symbols size.

relations, that the hypothesized liquid–liquid coexistence line has negative slope in the P–
T phase diagram. An experiment able to cross the hypothesized liquid–liquid coexistence
line should measure a sudden discontinuity in the local density of the liquid. Theoretical and
computational estimates of the liquid–liquid coexistence line locate it in the region below the
homogeneous nucleation of the crystal at TH and above TX, i.e., in the inaccessible region for
liquid bulk water.

3.2. The liquid–liquid phase transition line in the mean field approach

The mean field approach allows us to obtain an analytic expression for the spinodal lines
associated with the hypothesized liquid–liquid phase transition. For any P we solve

11
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equation (22) with respect to nσ (mσ , T, P). Then, to obtain the limit of stability Pmσ =0(T )

of the high-P–T HDL with no locally tetrahedral order (mσ = 0) with respect to the low-P–T
LDL with locally tetrahedral order (mσ > 0) we impose the condition

nσ (0, T, Pmσ =0) = 1/q. (25)

The solution of equation (25) is

Pmσ =0vHB = J + kBT ln

[
(e3Jσ /(qkBT ))2 + (q − 1)

2e3Jσ /(qkBT ) + (q − 2)

]
, (26)

where 3Jσ /q is the value of h, equation (21), for mσ = 0. In the limit q → ∞ we recover
Pmσ =0 = J/vHB and the spinodal line becomes flat in the P–T phase diagram. This behaviour
is consistent with recent experimental results on confined water and associated simulations [57].
In [57] the behaviour of the HDL spinodal is related to the disappearing of a dynamical
crossover in the experiments.

By imposing the condition

nσ (mσ , T, P0) = 1 + (q − 1)mσ

q
, (27)

we find Pmσ
(T ) for any mσ > 0:

Pmσ
vHB = J + kBT ln

[
1 − m2

σ

1 + (q − 1)m2
σ

(e3Jσ /(qkB T ))2+2(q−1)mσ + (q − 1)

2(e3Jσ /(qkBT ))2+2(q−1)mσ + (q − 2)

]
(28)

that coincides with equation (26) for mσ = 0. In figure 3(b) we plot the lines Pmσ
(T ) for

mσ � 0. Their convolution give an estimate of the spinodal region and the vertex of this
region at kBT ′/ε = 0.045 ± 0.005 and P ′v0/ε = 1.006 ± 0.001 is an estimate of the liquid–
liquid critical point C ′. The latter estimate does not coincide with the one given in the previous
section. To clarify this point and improve our understanding of the phase diagram we consider
the Widom line, about which many paper have recently appeared [57–59] even though there is
a long history of interest in this line [60].

3.3. The Widom line and the estimate of the critical points

The existence of a critical point induces large fluctuations in a region that extends to
temperatures and pressures far away in the phase diagram. For example, experiments show
that the effect of the gas–liquid critical point C on the response functions is evident even at
temperatures twice higher than the critical one. A similar behaviour is expected also for the
hypothesized liquid–liquid critical point C ′.

Above the temperature of a critical point the thermodynamic response functions have
an extreme (maximum or minimum) at the Widom line, defined as the locus of maximum
correlation length in the P–T phase diagram [61]. By decreasing T , the Widom line converges
to the critical point, where the correlation length diverges together with the response functions.
Therefore, for decreasing T along the Widom line, the response functions show extremes that
finally diverge at the critical point.

Since far above a critical point the maxima of correlation length and the extremes of
response functions become smooth and flat, the Widom line is broadened in a region whose
size increases at higher T . As a consequence, different response functions show extremes
along different lines, all around the Widom line and all converging at the critical point or at
higher T . The T where they converge gives an upper limit of the critical temperature.

In figure 3 we show our mean field results for the loci of response functions above C and
above C ′. As response function we use here αP and the T -derivative of the probability pHB

12
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(a)

(b)

Figure 4. (a) The probability of forming a normal hydrogen bond with local tetrahedral order
as a function of temperature T at constant pressure P . From top to bottom at temperature 0.5,
continuous lines are for 0 � Pv0/ε � 1 and dashed lines are for 1.1 � Pv0/ε � 1.6, with
increment of 0.1. The probability goes rapidly to 0 at low P and high T , and has a maximum at P
above PC′ , decreasing at low T . Below PC′ , the probability pHB increases toward 1 at low T , with
a dramatic increase just below PC′ . (b) Scaling of minima of αP = −(1/ρ)(dρ/dT )P (circles) and
of T -derivative of pHB at constant P equation (29) (squares) for TC′ < T < TC and of maxima of
αP (diamonds) for T > TC . Lines are fits with power laws diverging at kBTC /ε = 1.026 ± 0.005
and kBTC′ /ε = 0.05±0.1, with exponents −1.22±0.02 (continuous line for diamonds), −0.7±0.3
(continuous line for circles), −0.9 ± 0.3 (dashed line for squares), −1.0 ± 0.1 (dot–dashed line).

of forming a normal hydrogen bond with local tetrahedral order (figure 4(a)). The second is
related to the first by the relation

αP = 2
vHB

v

(
dpHB

dT

)

P

+ 1

v

(
d

dT

v0

n

)

P

(29)

and we find, numerically, that the maxima of αP coincide with those of the first term of
equation (29) for TC′ < T < TC and just above TC . The deviation from T  TC is a
consequence of the contribution to the thermal expansivity of the second term of equation (29),
accounting for the fluctuations not related to the hydrogen bonding. The point where the
different lines of maxima converge above C are consistent with our estimate of C (figure 3).

Knowing the location of the Widom line and the extremes of αP and (dpHB/dT )P ,
we can verify if the data are consistent with a power-law divergence at the estimated TC

and TC′ . As shown in figure 4, the data for T > TC are well fitted by power laws with
kBTC/ε = 1.026 ± 0.005 fully consistent with the estimate of the previous section. The large
error bars on the maxima for TC′ < T < TC do not allow us to extract easily an estimate of TC′ ,
however the data are well consistent with fits where TC′ ranges from 0.04 to 0.06, consistent
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with the estimates of the previous section. Hence, the analysis of the Widom line is consistent
with a kBTC′/ε = 0.05 ± 0.01.

By averaging all our present estimates for C ′, we conclude that kBTC′/ε = 0.047 ± 0.004
and PC′ v0/ε = 0.91 ± 0.09. These values compare very well with those (kBTC′/ε =
0.045 ± 0.005 and PC′ v0/ε = 0.841 ± 0.042) of our Monte Carlo simulations for the version
of this model with a truncated Lennard-Jones potential for the van der Waals interaction [52].
A detailed numerical analysis of the Widom line and its relation with a change in the dynamics,
based on Monte Carlo simulations is presented elsewhere [62].

4. Discussion

The results presented here, based on a Hamiltonian model for water, support the liquid–liquid
phase transition hypothesis to interpret the anomalies of water. The anomalous increase of the
response functions on cooling arises from approaching the liquid–liquid coexistence line, with
a genuine divergence at the critical point.

This hypothesis is consistent with experiments [8] on the melting line of metastable ice
IV and stable ice V, showing an abrupt change in their slopes as predicted if it would intersect
the metastable liquid–liquid phase transition line. However, the experimental resolution does
not allow us to conclude whether the sharp change is a real discontinuity, as required by the
liquid–liquid phase transition hypothesis. Interpolation of the experimental data is consistent
with an estimation of the liquid–liquid critical point at 1 kbar and 220 K.

Nevertheless, the liquid–liquid phase transition hypothesis is not the only possible
thermodynamically consistent interpretation. In the singularity-free interpretation [63, 53]
LDL and HDL are still smoothly connected to LDA and HDA, respectively, but no phase
transition separates them and a pressure increase give rise to a sharp, but continuous, increase
of density. Hence, the large increase of response functions seen in the experiments represents
only an apparent singularity, due to local density fluctuations, with no real divergence and
all the anomalies are interpreted as a consequence of the negative volume–entropy cross-
fluctuations [53].

Our model coincides with the one proposed to support the singularity-free scenario [53]
when we choose the intramolecular interaction Jσ = 0. Preliminary results [54] show that
for Jσ → 0 the liquid–liquid critical point moves in a continuous way to T = 0, leaving
the rest of the phase diagram unaffected. Hence, our model suggests that the singularity-free
scenario is valid only for zero intramolecular interaction, a condition that is not consistent with
the experimental observations ((i)–(x)) and with first-principles simulations for water [64].

An indirect confirmation of this conclusion comes from studies of other locally
tetrahedrally coordinated liquids that, like water [73], at low enough T and P , have
anticorrelated entropy and volume fluctuations, such as SiO2 and GeO2. Recent simulations
are consistent with the intriguing possibility that silica and silicon may also display a liquid–
liquid critical point [65, 66].

Interestingly, some properties of water, such as the polymorphism or the existence of
a low-density open crystal, could be present also in substances without a density anomaly,
but with two liquids with different local structures [67]. This observation allows us to
conclude that the possibility of a liquid–liquid critical point is not limited to fluids with
density anomalies—a conclusion supported by recent experiments for phosphorus [68–70] and
triphenyl phosphite [71, 72].

In the case of water, the hypothesized liquid–liquid phase transition is probably hindered
by inevitable freezing [52]. Indeed, it appears that the hypothesized liquid–liquid phase
transition is below, or at least close to, the glass transition temperature. A recent simulation
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analysis of the orientational dynamics of water at fixed density [47] has shown that the
temperature of dynamical arrest of the system, defined by the mode coupling theory, is
relatively close in temperature and density to recent estimate of the liquid–liquid critical
point [73]. However, as we have shown here, the study of the Widom line at temperatures above
the liquid–liquid critical point could represent a useful way to investigate the inaccessible part
of the supercooled phase diagram of water.
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